Democritus, maddenin taneciklerden oluştuğunu savunmuş ve bu taneciklere atom adını vermiştir.
Democritus, atom hakkındaki görüşlerini deneylere göre değil varsayımlara göre söylemiştir.
Democritus’ a göre;
• Madde parçalara ayrıldığında en sonunda bölünemeyen bir tanecik elde edilir ve bu tanecik atomdur.
• Bütün maddeler aynı tür atomlardan oluşur.
• Maddelerin farklı olmasının nedeni maddeyi oluşturan atomların sayı ve dizilişi biçiminin farklı olmasıdır.
• Atom görülemez.
• Atom görülemediği için bölünemez.
DALTON ATOM MODELİ
Elementler atom adı verilen son derece küçük taneciklerden oluşur.
Belli bir elementin bütün atomları birbirinin aynıdır; yani bu atomların boyutları eşittir, aynı kütleye sahiptir ve kimyasal özellikleri aynıdır. Ancak bir elementin atomları diğer bütün elementlerin atomlarından farklıdır.
Bileşikler birden çok elementin atomlarından oluşmuştur. Herhangi bir bileşikteki iki elementin atom sayılarının oranı bir tam sayı ya da basit tam sayılı bir kesirdir.
Kimyasal tepkimeler, yalnızca atomların birbirinden ayrılması, birbirleri ile birleşmesi ya da yeniden düzenlenmesinden ibarettir; atomların yok olmasına ya da oluşmasına yol açmaz.
Dalton Atom Modelinin eksiklikleri ve hataları:
Atomlar proton nötron ve elektron denilen alt parçacıklardan oluşmuştur ve boşluklu bir yapıya sahiptirler, ayrıca izotop atomların varlığından dolayı bir elementin tüm atomları özdeştir ibaresi de hatalıdır.
THOMSON ATOM MODELİ
Crooks tüpüne manyetik ve elektriksel alan uygulayarak elekron için yük/kütle oranını buldu.
Atomun dışa karşı nötr (+) ve (-) yüklerden oluştuğu söyledi.
Atomu üzümlü keke benzeterek kek hamurunu (+) yükler olarak, üzümleri ise (-) yükler olarak tanımladı.
Thomson nötronlardan bahsetmemiştir, ayrıca (+) ve (-) yüklerin yerlerini de hatalı olarak belirtmiştir.
RUTHERFORD ATOM MODELİ
Rutferford yaptığı deneyde ince altın levha üzerine alfa ışınlarını gönderdi.
Gönderdiği ışınların büyük bir çoğunluğu arkadaki ekrana geçerken çok az bir kısmının sapmaya uğradığını veya geriye döndüğünü gözlemledi.
Buradan yola çıkarak atomun pozitif yüklerinin tamamının çekirdek denen küçük bir hacimde toplandığnı söyledi.
Pozitif yükün büyüklüğü farklı element atomlarında farklıdır.
Atom boşluklu bir yapıya sahiptir.
Elektronlar çekirdek etrafında bulunurlar sayıca protonlara eşit sayıdadırlar.
Rutherford atomun çekirdeğinde yüksüz tanecikler olduğundan bahsetmiş ancak onları kanıtlayamamıştır. Nötronları 1932 yılında James Chadwick bulmuştur.
BOHR ATOM MODELİ

Elektron yüksek enerjili bir katmandan n = 1 katmanına inerse Lyman serisi
Yüksek enerjili bir katmandan n = 2 katmanına Balmer serisi
Yüksek enerjili bir katmandan n = 3 katmanına olan elektron Paschen serisi
Yüksek enerjili katmanlardan n = 4 katmanına olan elektron geçişlerine Brackett serisi,
Yüksek enerjili katmanlardan
n=5 katmanına olan elektron geçişlerine ise Pfund serisi adı verilir.
MODERN ATOM TEORİSİ
Bohr atom modeli, tek elektronlu türlerin davranışlarının açıklanmasında başarılı olmakla birlikte, çok elektronlu atomların davranışlarını açıklamada yetersiz kalmıştır. Modern atom teorisine göre , Bohr atom teorisindeki gibi elektronları yörüngelerde sabit hızla dönen tanecikler olarak düşünmek yanlıştır. Çünkü elektronun hızı ve yeri için kesin bir şey söylenemez. Elektronun bulunma olasılığının olduğu yerlerden bahsedilir.
Modern atom teorisinin modelinin varsayımları şunlardır:
1. Elektronlar çekirdek çevresinde belirli enerji düzeylerinde bulunur. Her enerji düzeyi n ile belirtilir.
Bu enerji düzeylerine baş kuant sayısı denir. Baş kuant sayısı orbitallerin çekirdekten ortalama uzaklığını ya da enerjisini belirler. Çekirdekten uzaklaştıkça enerji artar. Çünkü protonların elektronları çekim gücü azalır, buna bağlı olarak da elektronların hareketi ve enerjisi artar.
2. Elektronlar hem kendi çevrelerinde hem de çekirdek çevresinde döner. Elektronun kendi ekseni etrafında dönme hareketine spin hareketi, çekirdek çevresindeki dönme hareketine de orbital hareketi denir. Çekirdek çevresinde dönmeleri sırasında elektronların bulunma ihtimalinin yüksek olduğu geometrik bölgelere orbital denir. Dört çeşit orbital vardır.
s orbitali: Küresel bir şekle sahiptir. Birinci enerji düzeyinden itibaren her enerji düzeyinde bir tane s orbitali bulunur. En çok iki elektron alır.
p orbitali: İkinci enerji düzeyinden itibaren her enerji düzeyinde vardır. p orbitalleri, px , py ve pz olmak üzere üç çeşittir. Aynı enerji düzeyinde bulunan üç orbitalin de enerjileri birbirine eşittir.en çok altı elektron alır.
d orbitali: Üçüncü enerji düzeyinden itibaren her enerji düzeyinde vardır. Beş çeşit d orbitali vardır. Aynı enerji düzeyindeki beş orbitalin enerjileri birbirine eşittir. En çok on elektron alır.
f orbitali: Dördüncü enerji düzeyinden itibaren her enerji düzeyinde enerjileri birbirine eşit yedi tane f orbitali vardır. En çok on dört elektron alır.
Elektron Dizilişleri:
Elektronların orbitalleri doldurmasında belirli kurallar vardır. Bunlar şöyle özetlenebilir:
Elektronlar öncelikle enerjisi en az olan orbitali doldurur. Bir orbitalin enerjisi çekirdeğe yaklaştıkça azalır. Aynı temel enerji düzeyindeki orbitallerin enerjileri arasındaki ilişki s < p < d < f şeklindedir.Buna göre enerjisi en az olan orbital 1s dir.
Bir orbital en fazla iki elektron taşıyabilir. Bir orbitaldeki iki elektronun dönme yönleri zıttır. bu ilkeye Pauli dışlama ilkesi denir. Elektronların bu şekilde dönmeleri, oluşturdukları manyetik alan yönlerinin zıt olmasını sağlar. Bu şekilde elektronlar sanki zıt kutupları yan yana getirilmiş iki mıknatıs gibi birbirini çeker.
Şu anda uygulanan en düşük enerjiden en yükseğe doğru elektronların sıralanışı ,
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 şeklinde devam eder.
Bir orbital ve içindeki elektronlar, bir çember ve içine çizilen çapraz çizgi veya oklarla gösterilir.
1H: 1s1
2He: 1s2
5B: 1s2 2s2 2p1
Aynı temel enerji düzeyindeki eş enerjili orbitallere elektronlar önce teker teker girer. Tüm orbitaller yarı dolu hale geldikten sonra orbitaller tam dolu hale geçmeye başlar. Bu kurala Hund (Hunt) kuralı denir.
6C: 1s2 2s2 2p2
8O: 1s2 2s2 2p4
10Ne: 1s2 2s2 2p6
Bir atomdaki orbitallerin tümünün tam dolu veya bazılarının tam dolu diğerlerinin yarı dolu olması hâline küresel simetrik elektron dizilişi denir. Elektron dizilişi s1, s2, p3, p6, d5, d10, f7, f14 ile biten atomlar küresel simetrik elektron dağılımına sahiptir. Bu tür atomlar, diğerlerine göre daha düşük enerjili olup daha kararlı yapıdadır. Küresel simetri nedeniyle elektron dizilişlerinde aşağıdaki değişmeler olur.
ns2 (n1) d4 yerine ns1 (n1) d5
ns2 (n1) d9 yerine n s1 (n1) d10
Örneğin 24Cr ün elektron dizilişi : 1s2 2s2 2p6 3s2 3p6 4s2 3d4 şeklinde değil
24Cr: 1s2 2s2 2p6 3s2 3p6 4s1 3d5 şeklinde yazılır.
Aynı durum 29Cu da da vardır. 29Cu un gerçek elektron dizilişi ise,
29Cu: 1s2 2s2 2p6 3s2 3p6 4s1 3d10 şeklinde yazılır.
Bu değişmeler yalnız ns ve (n1) d orbitalleri arasında olur. Diğerlerinde bu tür değişme yoktur.
Elektron Dizilişlerinin Kısa Yazılışı
Atomların elektron dizilişleri soy gaz olarak bilinen ve elektron dizilişleri s2 p6 ile biten elementlerden yararlanılarak kısaltılabilir. Örneğin;
10Ne : 1s22s22p6,
11Na : 1s22s22p63s1 dir.
Na un ilk 10 elektronunun dizilişi Ne daki gibidir. Bu nedenle Na un elektron dizilişi;
11Na: [Ne] 3s1 şeklinde kısaltılabilir.
Uyarılmış Atomların Elektron Dizilişi
Uyarılmış atomların elektronlarından bazıları temel hal enerji düzeyinden daha yüksek enerji düzeylerine atlamış durumdadır.
11Na : 1s22s22p63s1 (temel hâl)
11Na : 1s22s22p63p1 (uyarılmış hâl)
Değerlik Elektronları
Bir atomda iç enerji düzeylerindeki elektronlar atom çekirdeğine daha yakın olduklarından atoma daha sıkı bağlıdır. Ancak en dış enerji düzeyindeki elektronlar atoma daha gevşek bağlıdır. Elementlerin tepkimeye girerken aldıkları, verdikleri veya ortaklaşa kullandıkları elektronlar, atomun en dış katmanındaki bu gevşek bağlı elektronlardır. Elementlerin kimyasal özelliklerini belirleyen bu elektronlara değerlik elektronları denir. Değerlik elektron sayıları aynı olan elementlerin kimyasal özellikleri benzerdir.
İyonların Elektron Dizilişi
Negatif yüklü bir iyonun elektron dizilişlerinde iyonun sahip olduğu toplam elektronlar en düşük enerjili orbitalden başlanarak orbitallere yazılır. Nötr azotun elektron dizilişi: 7N: 1s22s23p3 tür
N3 iyonunun elektron dizilişi; 7N3: 1s22s22p6 dır.
Pozitif yüklü bir iyonun elektron dizilişlerinde, önce atomun nötr haldeki elektron dizilişi yazılır. Sonra yüksek enerjili orbitallerden başlanarak yük sayısı kadar elektron orbitallerden çıkarılır.
17Cl : 1s22s22p63s23p5
17Cl+5 : 1s22s22p63s2 Geçiş elementlerinde, önce en yüksek enerji düzeyindeki s orbitallerinden, sonra da bir alt enerji düzeyindeki d orbitallerinden elektronlar koparılır.
26Fe :1s22s22p63s23p64s23d6
26Fe+2: [18Ar]3d6
Hiç yorum yok:
Yorum Gönder